[20] S. Rockman and L. Brown, “Pre-pandemic and pandemic influenza vaccines,” Hum.
Vaccin., vol. 6, no. 10, pp. 792–801, Oct. 2010.
[21] P. A. Scuffham and P. A. West, “Economic evaluation of strategies for the control and
management of influenza in Europe,” Vaccine, vol. 20, no. 19–20, pp. 2562–2578,
2002.
[22] M. Kiso et al., “Resistant influenza A viruses in children treated with oseltamivir:
descriptive study,” Lancet, vol. 364, no. 9436, pp. 759–765, 2004.
[23] O. Kistner, P. N. Barrett, W. Mundt, M. Reiter, S. Schober-Bendixen, and F.
Dorner, “Development of a mammalian cell (Vero) derived candidate influenza
virus vaccine,” Vaccine, vol. 16, no. 9–10, pp. 960–968, May–Jun. 1998.
[24] O. G. Engelhardt, “Many ways to make an influenza virus--review of influenza virus
reverse genetics methods,” Influenza Other Respir. Viruses, vol. 7, no. 3, pp. 249–256,
May 2013.
[25] J. Medina et al., “Vero/CHOK1, a novel mixture of cell lines that is optimal for the
rescue of influenza A vaccine seeds,” J. Virol. Methods, vol. 196, pp. 25–31, Feb.
2014.
[26] E. Hoffmann, “Eight-plasmid system for rapid generation of influenza virus vac-
cines,” Vaccine, vol. 20, no. 25–26, pp. 3165–3170, 2002.
[27] E. Milian et al., “Accelerated mass production of influenza virus seed stocks in
HEK-293 suspension cell cultures by reverse genetics,” Vaccine, vol. 35, no. 26,
pp. 3423–3430, Jun. 2017.
[28] F. Krammer, “The human antibody response to influenza A virus infection and
vaccination,” Nat. Rev. Immunol., vol. 19, no. 6, pp. 383–397, Jun. 2019.
[29] A. Sabbaghi, S. M. Miri, M. Keshavarz, M. Zargar, and A. Ghaemi, “Inactivation
methods for whole influenza vaccine production,” Rev. Med. Virol., vol. 29, no. 6,
p. e2074, Nov. 2019.
[30] M. F. Clincke, C. Molleryd, Y. Zhang, E. Lindskog, K. Walsh, and V. Chotteau,
“Very high density of CHO cells in perfusion by ATF or TFF in WAVE bioreactor.
Part I. Effect of the cell density on the process,” Biotechnol. Prog., vol. 29, no. 3,
pp. 754–767, May–Jun. 2013.
[31] B. Kelley, “Industrialization of mAb production technology: the bioprocessing in-
dustry at a crossroads,” MAbs, vol. 1, no. 5, pp. 443–452, Sep–Oct. 2009.
[32] C. A. T. Silva, A. A. Kamen, and O. Henry, “Recent advances and current chal-
lenges in process intensification of cell culture‐based influenza virus vaccine
manufacturing,” Can. J. Chem. Eng., vol. 99, no. 11, pp. 2525–2535, 2021.
[33] J. Coronel, G. Granicher, V. Sandig, T. Noll, Y. Genzel, and U. Reichl,
“Application of an Inclined Settler for Cell Culture-Based Influenza A Virus
Production in Perfusion Mode,” Front. Bioeng. Biotechnol., vol. 8, p. 672, 2020.
[34] D. Vazquez-Ramirez, I. Jordan, V. Sandig, Y. Genzel, and U. Reichl, “High titer MVA
and influenza A virus production using a hybrid fed-batch/perfusion strategy with an
ATF system,” Appl. Microbiol. Biotechnol., vol. 103, no. 7, pp. 3025–3035, Apr. 2019.
[35] F. Tapia et al., “Production of high-titer human influenza A virus with adherent and
suspension MDCK cells cultured in a single-use hollow fiber bioreactor,” Vaccine,
vol. 32, no. 8, pp. 1003–1011, Feb. 2014.
[36] E. Petiot and A. Kamen, “Real-time monitoring of influenza virus production ki-
netics in HEK293 cell cultures,” Biotechnol. Prog., vol. 29, no. 1, pp. 275–284,
Jan–Feb. 2013.
[37] E. Petiot, D. Jacob, S. Lanthier, V. Lohr, S. Ansorge, and A. A. Kamen, “Metabolic
and kinetic analyses of influenza production in perfusion HEK293 cell culture,”
BMC Biotechnol., vol. 11, p. 84, Sep. 2011.
Manufacturing of influenza vaccines
235